Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.766
Filtrar
1.
Environ Toxicol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563506

RESUMO

Excessive exposure to manganese (Mn) through drinking water and food during pregnancy significantly heightens the likelihood of neurodevelopmental damage in offspring. Multiple studies have indicated that melatonin (Mel) may help to relieve neurodevelopmental disorders caused by Mn, but potential mechanisms underlying this effect require further exploration. Here, we utilized primary neural stem cells (NSCs) as a model to elucidate the molecular mechanism underlying the protective function of Mel on Mn-induced cell proliferation dysfunction and cycle arrest. Our results showed that Mn disrupted the cell cycle in NSCs by suppressing positive regulatory proteins (CDK2, Cyclin A, Cyclin D1, and E2F1) and enhancing negative ones (p27KIP1 and p57KIP2), leading to cell proliferation dysfunction. Mel inhibited the Mn-dependent changes to these proteins and the cell cycle through nuclear receptor-related protein 1 (Nurr1), thus alleviating the proliferation dysfunction. Knockdown of Nurr1 using lentivirus-expressed shRNA in NSCs resulted in a diminished protective effect of Mel. We concluded that Mel mitigated Mn-induced proliferation dysfunction and cycle arrest in NSCs through Nurr1.

2.
Water Res ; 256: 121584, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598950

RESUMO

Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are prevalent in various environments on livestock farms, including livestock waste, soil, and groundwater. Contamination of groundwater by ARB and ARGs in livestock farms is a growing concern as it may have potentially huge risks to human health. However, the source of groundwater-borne ARB and ARGs in animal farms remains largely unknown. In this study, different types of samples including groundwater and its potential contamination sources from aboveground (pig feces, wastewater, and soil) from both working and abandoned swine feedlots in southern China were collected and subjected to metagenomic sequencing and ARB isolation. The source tracking based on metagenomic analysis revealed that 56-95 % of ARGs in groundwater was attributable to aboveground sources. Using metagenomic assembly, we found that 45 ARGs predominantly conferring resistance to aminoglycosides, sulfonamides, and tetracyclines could be transferred from the aboveground sources to groundwater, mostly through plasmid-mediated horizontal gene transfer. Furthermore, the full-length nucleotide sequences of sul1, tetA, and TEM-1 detected in ARB isolates exhibited the close evolutionary relationships between aboveground sources and groundwater. Some isolated strains of antibiotic-resistant Pseudomonas spp. from aboveground sources and groundwater had the high similarity (average nucleotide identity > 99 %). Notably, the groundwater-borne ARGs were identified as mainly carried by bacterial pathogens, potentially posing risks to human and animal health. Overall, this study underscores the dissemination of ARGs from aboveground sources to groundwater in animal farms and associated risks.

3.
Sci Rep ; 14(1): 8151, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589538

RESUMO

This study demonstrates a novel use of the U-Net convolutional neural network (CNN) for modeling pixel-based electrostatic potential distributions in GaN metal-insulator-semiconductor high-electron mobility transistors (MIS-HEMTs) with various gate and source field plate designs and drain voltages. The pixel-based images of the potential distribution are successfully modeled from the developed U-Net CNN with an error of less than 1% error relative to a TCAD simulated reference of a 500-V electrostatic potential distribution in the AlGaN/GaN interface. Furthermore, the modeling time of potential distributions by U-Net takes about 80 ms. Therefore, the U-Net CNN is a promising approach to efficiently model the pixel-based distributions characteristics in GaN power devices.

4.
Clin Breast Cancer ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582617

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, generally associated with a high risk of recurrence and poor prognosis. Our understanding of the heterogeneity of TNBC has increased over the past decade, and with it a recognition that some TNBCs are immunogenically active. This finding has led to the investigation of immunotherapy-based approaches for treatment of both early and advanced-stage TNBC. In this review, we provide an overview of the biologic rationale for immunotherapy use in TNBC, and review data from seminal trials which have culminated in the approval of immunotherapy for both early and advanced TNBC. Identification of predictive biomarkers to aid in treatment selection, development of novel treatment combinations to combat resistance, and refinement of therapeutic targets enables continued improvement in outcomes with immunotherapy for TNBC.

5.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611739

RESUMO

In this paper, we study the drift behavior of organic electrochemical transistor (OECT) biosensors in a phosphate-buffered saline (PBS) buffer solution and human serum. Theoretical and experimental methods are illustrated in this paper to understand the origin of the drift phenomenon and the mechanism of ion diffusion in the sensing layer. The drift phenomenon is explained using a first-order kinetic model of ion adsorption into the gate material and shows very good agreement with experimental data on drift in OECTs. We show that the temporal current drift can be largely mitigated using a dual-gate OECT architecture and that dual-gate-based biosensors can increase the accuracy and sensitivity of immuno-biosensors compared to a standard single-gate design. Specific binding can be detected at a relatively low limit of detection, even in human serum.


Assuntos
Projetos de Pesquisa , Humanos , Adsorção , Difusão , Cinética
6.
Rheumatol Adv Pract ; 8(2): rkae024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601139

RESUMO

Aromatase inhibitors (AIs) have shown great success as adjuvant therapy for post-menopausal women with hormone receptor-positive breast cancers. AI-induced arthralgia (AIA) is a frequent AI toxicity contributing to non-adherence and discontinuation. This review aims to understand current knowledge of AIA. The mean incidence of AIA was 39.1% and the mean discontinuation of AI therapy due to AIA was 9.3%. Most of the AIAs were non-inflammatory. A shorter time since the last menstrual period and pre-existing joint pain were risk factors. Vitamin D3 supplementation may be a preventative measure and treatment with duloxetine, acupuncture and/or exercise is supported by large randomized controlled trials. There was consistent improvement in AIAs with switching to an alternate AI, and this could additionally allow continuation of cancer treatment with AI. Further research is needed to identify predictive biomarkers, better characterize AIA subcategories and study more reliable therapeutic options.

7.
Adv Mater ; : e2403078, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583072

RESUMO

Composite polymer solid electrolytes (CPEs), possessing good rigid flexible, are expected to be used in solid-state lithium-metal batteries. The integration of fillers into polymer matrices emerges as a dominant strategy to improve Li+ transport and form a Li+-conducting electrode-electrolyte interface. However, challenges arise as traditional fillers: 1) inorganic fillers, characterized by high interfacial energy, induce agglomeration; 2) organic fillers, with elevated crystallinity, impede intrinsic ionic conductivity, both severely hindering Li+ migration. Here, a concept of super-ionic conductor soft filler, utilizing a Li+ conductivity nanocellulose (Li-NC) as a model, is introduced which exhibits super-ionic conductivity. Li-NC anchors anions, and enhances Li+ transport speed, and assists in the integration of cathode-electrolyte electrodes for room temperature solid-state batteries. The tough dual-channel Li+ transport electrolyte (TDCT) with Li-NC and polyvinylidene fluoride (PVDF) demonstrates a high Li+ transfer number (0.79) due to the synergistic coordination mechanism in Li+ transport. Integrated electrodes' design enables stable performance in LiNi0.5Co0.2Mn0.3O2|Li cells, with 720 cycles at 0.5 C, and 88.8% capacity retention. Furthermore, the lifespan of Li|TDCT|Li cells over 4000 h and Li-rich Li1.2Ni0.13Co0.13Mn0.54O2|Li cells exhibits excellent performance, proving the practical application potential of soft filler for high energy density solid-state lithium-metal batteries at room temperature.

8.
J Stroke Cerebrovasc Dis ; 33(6): 107536, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636322

RESUMO

INTRODUCTION: Numerous diseases have been found to be associated with the lactate-to-albumin ratio (LAR), as confirmed by existing research. This study aims to investigate the relationship between LAR within 24 hours of admission and a 28-day mortality rate in patients manifesting ischemic stroke. METHODS: This retrospective cohort study utilized data from the Medical Information Mart for Intensive Care IV (MIMIC-IV, version 2.1) database. We included adult patients with acute ischemic stroke (AIS) who were admitted to the intensive care unit. The primary outcome entailed evaluating the ability of LAR to predict death at 28-day of hospital admission in patients with AIS. RESULTS: A total of 502 patients with ischemic stroke were enrolled in the study, of which 185 (36.9 %) died within 28 days after hospital admission. We identified a linear association between LAR and mortality risk. Compared with the reference group (first LAR tertile), the 28-day mortality was increased in the highest tertile; the fully adjusted HR value was 1.21 (1.08 to 1.40). the Area Under the Curve (AUC) value for LAR was 58.26 % (95 % CI: 53.05 % - 63.46 %), which was higher than that for arterial blood lactate (AUC = 56.88 %) and serum albumin (AUC = 55.29 %) alone. It was not inferior even when compared to SOFA (AUC = 56.28 %). The final subgroup analysis exhibited no significant interaction of LAR with each subgroup (P for interaction: 0.079 - 0.848). CONCLUSION: In our study, LAR emerged as a promising predictor of all-cause mortality in acute ischemic stroke patients within 28 days of admission.

9.
Histol Histopathol ; : 18743, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38639204

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is a common chronic degenerative joint disease. 3D printing technology has become one of the important directions of medical development along with individualized precision treatment in orthopedics. OBJECTIVE: To investigate the effect of 3D printing technology-assisted total knee arthroplasty (TKA) on cartilage in rabbits with KOA. METHODS: A rabbit model of KOA was established and treated by TKA or 3D printing-assisted TKA. Four weeks after treatment, radiological evaluation of rabbit knees was performed by X-ray examination, in order to observe the severity of osteoarthritic lesions. Then the knee joints of rabbits were collected for Hematoxylin-eosin, Toluidine blue, and Safranin O-Fast green staining. The expressions of cartilage matrix metabolism-related and apoptosis-related genes were scrutinized by real-time quantitative reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry. The levels of inflammatory-related factors in the cartilage tissues of rabbits were tested by enzyme-linked immunosorbent assay. RESULTS: In rabbits with KOA, 3D printing technology-assisted TKA alleviated the inflammation and bone remodeling of the knee joint, relieved synovial hyperplasia and inflammatory cell infiltration in the articular cartilage, reduced articular cartilage degradation, suppressed cartilage matrix metabolism, and mitigated the inflammatory response and apoptosis of cartilage cells. CONCLUSION: 3D printing technology-assisted TKA exhibits a good treatment effect in rabbit KOA. This study provides an important basis for the clinical application of 3D printing technology-assisted TKA in KOA treatment.

10.
BMC Vet Res ; 20(1): 151, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643127

RESUMO

BACKGROUND: Numerous previous reports have demonstrated the efficacy of Lactic acid bacteria (LAB) in promoting growth and preventing disease in animals. In this study, Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were isolated from the feces of healthy rabbits, and both strains showed good probiotic properties in vitro. Two strains (108CFU/ml/kg/day) were fed to weaned rabbits for 21 days, after which specific bacterial infection was induced to investigate the effects of the strains on bacterial diarrhea in the rabbits. RESULTS: Our data showed that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 interventions reduced the incidence of diarrhea and systemic inflammatory response, alleviated intestinal damage and increased antibody levels in animals. In addition, Enterococcus faecium ZJUIDS-R1 restored the flora abundance of Ruminococcaceae1. Ligilactobaciiius animalis ZJUIDS-R2 up-regulated the flora abundance of Adlercreutzia and Candidatus Saccharimonas. Both down-regulated the flora abundance of Shuttleworthia and Barnesiella to restore intestinal flora balance, thereby increasing intestinal short-chain fatty acid content. CONCLUSIONS: These findings suggest that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were able to improve intestinal immunity, produce organic acids and regulate the balance of intestinal flora to enhance disease resistance and alleviate diarrhea-related diseases in weanling rabbits.


Assuntos
Infecções Bacterianas , Enterococcus faecium , Microbioma Gastrointestinal , Lactobacillales , Probióticos , Coelhos , Animais , Enterococcus faecium/fisiologia , Probióticos/uso terapêutico , Probióticos/farmacologia , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções Bacterianas/veterinária , Imunidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-38613761

RESUMO

Reducing the accumulation of cadmium (Cd) and mitigating its toxicity are pivotal strategies for addressing Cd pollution's threats to agriculture and human health. Hydrogen sulfide (H2S) serves as a signaling molecule, playing a crucial role in plant stress defense mechanisms. Nevertheless, a comprehensive assessment of the impact of exogenous H2S on plant growth, antioxidant properties, and gene expression under Cd stress remains lacking. In this meta-analysis, we synthesized 575 observations from 27 articles, revealing that exogenous H2S significantly alleviates Cd-induced growth inhibition in plants. Specifically, it enhances root length (by 8.71%), plant height (by 15.67%), fresh weight (by 15.15%), dry weight (by 22.54%), and chlorophyll content (by 27.99%) under Cd stress conditions. H2S boosts antioxidant enzyme activity, particularly catalase (CAT), by 39.51%, thereby reducing Cd-induced reactive oxygen species (ROS) accumulation. Moreover, it impedes Cd translocation from roots to shoots, resulting in a substantial 40.19% reduction in stem Cd content. Additionally, H2S influences gene expression in pathways associated with antioxidant enzymes, metal transport, heavy metal tolerance, H2S biosynthesis, and energy metabolism. However, the efficacy of exogenous H2S in alleviating Cd toxicity varies depending on factors such as plant species, concentration of the H2S donor sodium hydrosulfide (NaHS), application method, and cultivation techniques. Notably, NaHS concentrations exceeding 200 µM may adversely affect plants. Overall, our study underscores the role of exogenous H2S in mitigating Cd toxicity and elucidates its mechanism, providing insights for utilizing H2S to combat Cd pollution in agriculture.

12.
ACS Appl Mater Interfaces ; 16(15): 18745-18753, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573811

RESUMO

Zeolite-catalyzed dimethyl ether (DME) carbonylation provides a novel route to producing methyl acetate (MeOAc). Mordenite (MOR) has drawn significant interest because of its remarkable MeOAc selectivity in DME carbonylation, albeit with limited catalytic stability. Herein, novel MOR-based DME carbonylation catalysts, distinguished by long-term stability and high activity were successfully developed, based on an H2-promoted benign coke strategy. Both the H2 cofeeds and the presence of metal species with hydrogenation capability are demonstrated to be crucial for the regulation of coke depositions. The coke deposits can potentially cover the acid sites in the 12-MR main channels, thereby mitigating the occurrence of undesirable methanol-to-hydrocarbon side reactions. Meanwhile, the elimination of ultralarge coke species under the assistance of H2 and Cu species could ensure smooth mass transfer within the catalyst, contributing to its remarkable catalytic performance. The most highlighted DME carbonylation performance was achieved on coke-mediated CuZn-HMOR with a high MeOAc yield of 0.4-0.5 g·gcat-1·h-1 for over 520 h (over 50× enhancement versus HMOR), exhibiting promising industrial application potential. The current strategy is expected to inspire further research into zeolite-catalyzed reactions, which could be potentially improved by the presence of benign coke.

13.
Taiwan J Ophthalmol ; 14(1): 78-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654996

RESUMO

PURPOSE: The purpose of this study is to investigate visual and tomographic outcomes and complications of long-arc length intrastromal corneal ring segment (ICRS) implantation for the treatment of advanced keratoconus. MATERIALS AND METHODS: This retrospective study enrolled 10 eyes of 9 subjects. All patients received 320-degree ICRS (320-ICRS) implantation with femtosecond laser-assisted technique based on their advanced grading with preoperative high keratometry (K) value, asphericity (Q), and astigmatism. Medical records and corneal tomography changes of consecutive patients were reviewed at baseline, 1, and 3 months after treatment. RESULTS: There are 6 female and 3 male patients with a mean age of 29.6 ± 7.8 years in this study. Mean K (Km) reduced from 59.01 ± 5.81 D preoperatively to 50.7 ± 5.3 and 50.2 ± 3.66 postoperatively (after 1 month and 3 months respectively, P < 0.001). The changes in mean K, K1, K2, and maximum K (Kmax) reading were all statistically significant (all P < 0.001). Mean uncorrected distance visual acuity (UCVA) improved from 20/400 to 20/200. Mean best-corrected distance visual acuity (BCVA) improved from 20/100 to 20/60. Both UCVA and BCVA showed a trend of improvement at postoperative month 3, though insignificant in BCVA (P = 0.114). Mean Q improved from -1.59 ± 0.62 preoperatively to -0.48 ± 1.08 and -0.11 ± 1.04 postoperatively (after 1 month and 3 months respectively, P = 0.016, 0.002). No intraoperative or postoperative complications were observed. CONCLUSIONS: The present results suggest that implanting a 320-ICRS is a safe and effective procedure for treating patients with advanced keratoconus. Preoperative corneal measurements and the selection of types and thickness of ICRS are important to prevent unpredictable results.

14.
Taiwan J Ophthalmol ; 14(1): 121-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654991

RESUMO

This case discussed a significant ocular side effect, bilateral keratitis, which could be induced by afatinib, an irreversible epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). We explored the disease progression of a 52-year-old, stage IV nasopharyngeal carcinoma male patient, who was under afatinib treatment and had experienced progressive bilateral eye dryness and tenderness on increasing afatinib from 40 mg every other day to 40 mg daily. Clinical examination noted bilateral visual acuity reduction, diffuse superficial punctate keratopathy in the right eye, and a central epithelial defect in the left eye. Seidel test results were negative for both eyes, with no corneal infiltration, lagophthalmos, anterior chamber cell precipitation, or retinal lesion. Symptoms subsequently resolved after reducing the frequency of afatinib used, along with intensive ocular hydration. In summary, this case highlighted afatinib's potential link to bilateral keratitis, and early afatinib dose adjustment with supportive medication could significantly reverse the condition.

15.
Food Chem ; 449: 139191, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38583396

RESUMO

This study discusses interaction differences between three phenols (protocatechuic acid, naringin and tannic acid) and starch helix, investigates influences of phenols at different doses on properties of maize starch, and further determines their effects on quality and function of maize-starchy foods. Simulated results indicate variations of phenolic structure (phenolic hydroxyl group amount, glycoside structure and steric hindrance) and dose induce phenols form different complexes with starch helix. Formation of different starch-phenols complexes alters gelatinization (1.65-5.63 J/g), pasting form, water binding capacity (8.83-12.69 g/g) and particle size distribution of starch. Meanwhile, differences in starch-phenols complexes are reflected in fingerprint area (R1045/1022: 0.920 to 1.047), crystallinity (8.3% to 17.0%), rheology and gel structure of starch. Additionally, phenols change texture and color of cold maize cake, giving them different antioxidant capacity and lower digestibility. Findings are beneficial for understanding interaction between starch and different phenols and their potential application.

16.
Heliyon ; 10(7): e28670, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586420

RESUMO

Background: Immunotherapy has changed the treatment landscape for lung cancer. This study aims to construct a tumor mutation-related model that combines long non-coding RNA (lncRNA) expression levels and tumor mutation levels in tumor genomes to detect the possibilities of the lncRNA signature as an indicator for predicting the prognosis and response to immunotherapy in lung adenocarcinoma (LUAD). Methods: We downloaded the tumor mutation profiles and RNA-seq expression database of LUAD from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were extracted based on the cumulative number of mutations. Cox regression analyses were used to identify the prognostic lncRNA signature, and the prognostic value of the five selected lncRNAs was validated by using survival analysis and the receiver operating characteristic (ROC) curve. We used qPCR to validate the expression of five selected lncRNAs between human lung epithelial and human lung adenocarcinoma cell lines. The ImmuCellAI, immunophenoscore (IPS) scores and Tumor Immune Dysfunction and Exclusion (TIDE) analyses were used to predict the response to immunotherapy for this mutation related lncRNA signature. Results: A total of 162 lncRNAs were detected among the differentially expressed lncRNAs between the Tumor mutational burden (TMB)-high group and the TMB-low group. Then, five lncRNAs (PLAC4, LINC01116, LINC02163, MIR223HG, FAM83A-AS1) were identified as tumor mutation-related candidates for constructing the prognostic prediction model. Kaplan‒Meier curves showed that the overall survival of the low-risk group was significantly better than that of the high-risk group, and the results of the GSE50081 set were consistent. The expression levels of PD1, PD-L1 and CTLA4 in the low-risk group were higher than those in the high-risk group. The IPS scores and TIDE scores of patients in the low-risk group were significantly higher than those in the high-risk group. Conclusion: Our findings demonstrated that the five lncRNAs (PLAC4, LINC01116, LINC02163, MIR223HG, FAM83A-AS1) were identified as candidates for constructing the tumor mutation-related model which may serve as an indicator of tumor mutation levels and have important implications for predicting the response to immunotherapy in LUAD.

17.
Adv Mater ; : e2313097, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643386

RESUMO

Therapy-induced immunogenic cell death (ICD) can initiate both innate and adaptive immune responses for amplified anti-tumor efficacy. However, dying cell-released ICD signals are prone to being sequestered by the TIM-3 receptors on dendritic cell (DC) surfaces, preventing immune surveillance. Herein, dismantlable coronated nanoparticles (NPs) are fabricated as a type of spatiotemporally controlled nanocarriers for coupling tumor cell-mediated ICD induction to DC-mediated immune sensing. These NPs are loaded with an ICD inducer, mitoxantrone (MTO), and wrapped by a redox-labile anti-TIM-3 (αTIM-3) antibody corona, forming a separable core-shell structure. The antibody corona disintegrates under high levels of extracellular reactive oxygen species in the tumor microenvironment, exposing the MTO-loaded NP core for ICD induction and releasing functional αTIM-3 molecules for DC sensitization. Systemic administration of the coronated NPs augments DC maturation, promotes cytotoxic T cell recruitment, enhances tumor susceptibility to immune checkpoint blockade, and prevents the side effects of MTO. This study develops a promising nanoplatform to unleash the potential of host immunity in cancer therapy. This article is protected by copyright. All rights reserved.

18.
Genes (Basel) ; 15(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540425

RESUMO

Cadmium (Cd)-induced oxidative stress detrimentally affects hyperaccumulator growth, thereby diminishing the efficacy of phytoremediation technology aimed at Cd pollution abatement. In the domain of plant antioxidant mechanisms, the role of glutathione peroxidase (GPX) in conferring Cd tolerance to tobacco (Nicotiana tabacum) remained unclear. Our investigation employed genome-wide analysis to identify 14 NtGPX genes in tobacco, revealing their organization into seven subgroups characterized by analogous conserved domain patterns. Notably, qPCR analysis highlighted NtGPX8a as markedly responsive to Cd2+ stress. Subsequent exploration through yeast two-hybridization unveiled NtGPX8a's utilization of thioredoxins AtTrxZ and AtTrxm2 as electron donors, and without interaction with AtTrx5. Introduction of NtGPX8a into Escherichia coli significantly ameliorated Cd-induced adverse effects on bacterial growth. Transgenic tobacco overexpressing NtGPX8a demonstrated significantly augmented activities of GPX, SOD, POD, and CAT under Cd2+ stress compared to the wild type (WT). Conversely, these transgenic plants exhibited markedly reduced levels of MDA, H2O2, and proline. Intriguingly, the expression of NtGPX8a in both E. coli and transgenic tobacco led to increased Cd accumulation, confirming its dual role in enhancing Cd tolerance and accumulation. Consequently, NtGPX8a emerges as a promising candidate gene for engineering transgenic hyperaccumulators endowed with robust tolerance for Cd-contaminated phytoremediation.


Assuntos
Cádmio , Tabaco , Cádmio/toxicidade , Cádmio/metabolismo , Tabaco/genética , Peróxido de Hidrogênio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Antioxidantes/metabolismo , Glutationa Peroxidase/genética
19.
Nano Lett ; 24(13): 4020-4028, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517395

RESUMO

The use of electrolyte additives is an efficient approach to mitigating undesirable side reactions and dendrites. However, the existing electrolyte additives do not effectively regulate both the chaotic diffusion of Zn2+ and the decomposition of H2O simultaneously. Herein, a dual-parasitic method is introduced to address the aforementioned issues by incorporating 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm]OTf) as cosolvent into the Zn(OTf)2 electrolyte. Specifically, the OTf- anion is parasitic in the solvent sheath of Zn2+ to decrease the number of active H2O. Additionally, the EMIm+ cation can construct an electrostatic shield layer and a hybrid organic/inorganic solid electrolyte interface layer to optimize the deposition behavior of Zn2+. This results in a Zn anode with a reversible cycle life of 3000 h, the longest cycle life of full cells (25,000 cycles), and an extremely high initial capacity (4.5 mA h cm-2), providing a promising electrolyte solution for practical applications of rechargeable aqueous zinc-ion batteries.

20.
Free Radic Biol Med ; 217: 116-125, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548187

RESUMO

PURPOSE: Ferroptosis has recently been recognized as a mechanism of cerebral ischemia-reperfusion (I/R) injury, attributed to blood-brain barrier (BBB) disruption. Edaravone dexboneol (Eda.B) is a novel neuroprotective agent widely employed in ischemic stroke, which is composed of edaravone (Eda) and dexborneol. This study aimed to investigate the protective effects of Eda.B on the BBB in cerebral I/R and explore its potential mechanisms. METHODS: Transient middle cerebral artery occlusion (tMCAO) Sprague-Dawley-rats model was used. Rats were randomly assigned to sham-operated group (sham, n = 20), model group (tMCAO, n = 20), Eda.B group (Eda.B, n = 20), Eda group (Eda, n = 20) and dexborneol group (dexborneol, n = 20), and Eda.B + Zinc protoporphyria group (Eda.B + ZnPP, n = 5). Infarct area, cellular apoptosis and neurofunctional recovery were accessed through TTC staining, TUNEL staining, and modified Garcia scoring system, respectively. BBB integrity was evaluated via Evans blue staining. Nuclear factor E2 related factor 2 (Nrf-2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) signaling were qualified by Western blot. Transmission electron microscopy (TEM) revealed alterations in ipsilateral brain tissue among groups. Glutathione (GSH) and malondialdehyde (MDA) levels, and Fe2+ tissue content determination were detected. RESULTS: Eda.B effectively improved neurological deficits, diminished infarct area and cellular apoptosis, as well as ameliorated BBB integrity in tMCAO rats. Further, Eda.B significantly inhibited ferroptosis, as evidenced by ameliorated pathological features of mitochondria, down-regulated of MDA and Fe2+ levels and up-regulated GSH content. Mechanistically, Eda.B attenuated BBB disruption via Nrf-2-mediated ferroptosis, promoting nuclear translocation of Nrf-2, increasing HO-1, GPX4 expression, alleviating the loss of zonula occludens 1 (ZO-1) and occludin as well as decreasing 4-hydroxynonenal (4-HNE) level. CONCLUSIONS: This study revealed for the first time that Eda.B safeguarded the BBB from cerebral I/R injury by inhibiting ferroptosis through the activation of the Nrf-2/HO-1/GPX4 axis, providing a novel insight into the neuroprotective effect of Eda.B in cerebral I/R.


Assuntos
Isquemia Encefálica , Ferroptose , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Barreira Hematoencefálica , Heme Oxigenase-1/metabolismo , Edaravone/farmacologia , Ratos Sprague-Dawley , Isquemia Encefálica/patologia , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Traumatismo por Reperfusão/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...